Effects of Surface Charge and Particle Size of Cell-Penetrating Peptide/Nanoparticle Complexes on Cellular Internalization

نویسندگان

  • Betty Revon Liu
  • Ming-Huan Chan
  • Hwei-Hsien Chen
  • Shih-Yen Lo
  • Yue-Wern Huang
  • Han-Jung Lee
چکیده

Cell membranes are natural barriers that prevent macromolecules from permeating cells. The efficiency of exogenous materials entering cells relies on various strategies and factors. Cell-penetrating peptides (CPPs) are distinctive molecules that can penetrate cells by themselves, as well as carry cargoes into cells in both covalent and noncovalent manners. In this chapter, we use CPP-mediated delivery of nanomaterials to illustrate the importance of surface charge and size of nanoparticles on cellular uptake. We found that three different arginine-rich CPPs (SR9, HR9, and PR9) are able to form stable complexes with nanomaterials, including quantum dots (QDs) and DNAs, and the complexes can effectively internalize into cells. Our study demonstrated that zetapotential of CPP/cargo nanoparticulate complexes is a key predictor of transduction efficiency. On a different note, a combination of CPPs with cargoes resulted in complexes with various sizes. The most positively charged HR9/cargo complexes displayed the highest protein transduction efficiency. The correlation coefficient analysis demonstrated a high correlation between zeta-potential and transduction efficiency of CPP/DNA complexes. A logarithmic curve was plotted with zeta value against transduction efficiency with an R-squared value of 0.9454. With similar surface charges, particle sizes could affect cellular uptake efficiency of CPP/QD complexes. Collectively, our findings elucidate that zeta-potential of CPP/cargo nanoparticulate complexes plays a major role in determining transduction efficiency, while particle sizes of CPP/ cargo nanoparticulate complexes have a minor effect in cell permeability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of i...

متن کامل

Design and characterization of a new peptide vector for short interfering RNA delivery

RNA interference holds tremendous potential as one of the most powerful therapeutic strategies. However, the properties of short interfering RNA (siRNA), such as hydrophilicity, negative charge, and instability in serum have limited its applications; therefore, significant efforts have been undertaken to improve its cellular uptake. Cell penetrating peptides have been utilized to deliver variou...

متن کامل

In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide

Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...

متن کامل

The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles

Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013